Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair
نویسندگان
چکیده
منابع مشابه
Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair
The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran...
متن کاملGelatin/hydroxyapatite nanocomposite scaffolds for bone repair
The use of bioscaffolds for tissue repair is widely accepted. They can provide structural stability and a 3D system on which cells can grow new tissue. Natural bone is composed of organic (mainly collagen) and mineral biomaterials (predominantly carbonate hydroxyapatite, HA). In recent years, developments in 3D porous-scaffold manufacturing have increased hopes of successful fabrication of stru...
متن کاملPreparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application
Objective(s): Hardystonite (HT) is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Ma...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کامل3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds
The use of both bioglass (BG) and β tricalcium phosphate (β-TCP) for bone replacement applications has been studied extensively due to the materials' high biocompatibility and ability to resorb when implanted in the body. 3D printing has been explored as a fast and versatile technique for the fabrication of porous bone scaffolds. This project investigates the effects of using different combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanobiotechnology
سال: 2020
ISSN: 1477-3155
DOI: 10.1186/s12951-020-00594-6